Condition for Infimum of Subset to equal Infimum of Set

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $S$ be a real set.

Let $T$ be a subset of $S$.

Let $S$ and $T$ admit infima.


Then:

$\inf S = \inf T \iff \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s + \epsilon > t$


Proof

Necessary Condition

Let $\inf S = \inf T$.

The aim is to establish that $\forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s + \epsilon > t$.


We have:

\(\ds \inf S\) \(=\) \(\ds \inf T\)
\(\ds \leadsto \ \ \) \(\ds \inf S\) \(\ge\) \(\ds \inf T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: \, \) \(\ds s + \epsilon\) \(>\) \(\ds t\) Infima of two Real Sets


Sufficient Condition

Let $\forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s + \epsilon > t$.

The aim is to establish that $\inf S = \inf T$.


We have:

\(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: \, \) \(\ds s + \epsilon\) \(>\) \(\ds t\)
\(\ds \leadstoandfrom \ \ \) \(\ds \inf S\) \(\ge\) \(\ds \inf T\) Infima of two Real Sets
\(\ds \leadstoandfrom \ \ \) \(\ds \inf S\) \(\ge\) \(\ds \inf T \ge \inf S\) as $\inf T \ge \inf S$ is true by Infimum of Subset
\(\ds \leadstoandfrom \ \ \) \(\ds \inf S\) \(=\) \(\ds \inf T\)

$\blacksquare$