Conditional Entropy Given Trivial Sigma-Algebra is Entropy

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.

Let $\AA \subseteq \Sigma$ be a finite sub-$\sigma$-algebra.

Let $\NN := \set {\O, \Omega}$ be the trivial $\sigma$-algebra.


Then:

$\ds \map H {\AA \mid \NN} = \map H \AA$

where:

$\map H {\cdot \mid \cdot}$ denotes the conditional entropy
$\map H {\, \cdot \,}$ denotes the entropy


Proof

\(\ds \map H {\AA \mid \NN}\) \(=\) \(\ds \map H {\map \xi \AA \mid \map \xi \NN}\) Definition of Conditional Entropy of Finite Sub-$\sigma$-Algebra
\(\ds \) \(=\) \(\ds \sum_{\substack {B \mathop \in {\map \xi \NN } \\ \map \Pr B \mathop > 0} } \sum_{A \mathop \in {\map \xi \AA } } \map \Pr B \map \phi {\dfrac {\map \Pr {A \cap B} } {\map \Pr B} }\) Definition of Conditional Entropy of Finite Partitions
\(\ds \) \(=\) \(\ds \sum_{A \mathop \in {\map \xi \AA } } \map \Pr \Omega \map \phi {\dfrac {\map \Pr {A \cap \Omega} } {\map \Pr \Omega} }\) as $\map \xi \NN = \set \Omega$ by definition of Finite Partition Generated by Finite Sub-$\sigma$-Algebra
\(\ds \) \(=\) \(\ds \sum_{A \mathop \in {\map \xi \AA } } \map \phi {\map \Pr {A \cap \Omega} }\) as $\map \Pr \Omega = 1$ by definition of Probability Measure
\(\ds \) \(=\) \(\ds \sum_{A \mathop \in {\map \xi \AA } } \map \phi {\map \Pr A }\) $\forall A \in \Sigma : A \subseteq \Omega$
\(\ds \) \(=\) \(\ds \map H {\map \xi \AA}\) Definition of Entropy of Finite Partition
\(\ds \) \(=\) \(\ds \map H \AA\) Definition of Entropy of Finite Sub-$\sigma$-Algebra

$\blacksquare$


Sources