Conditions for Lexicographic Order on Pair of Ordered Sets to be Lattice/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S_1, \preccurlyeq_1}$ and $\struct {S_2, \preccurlyeq_2}$ be ordered sets.

Let $\preccurlyeq_l$ denote the lexicographic order on $S_1 \times S_2$:

$\tuple {x_1, x_2} \preccurlyeq_l \tuple {y_1, y_2} \iff \tuple {x_1 \prec_1 y_1} \lor \tuple {x_1 = y_1 \land x_2 \preccurlyeq_2 y_2}$


Let $\tuple {x_1, x_2} \preccurlyeq_l \tuple {y_1, y_2}$.

Then:

$x_1 \preccurlyeq_1 y_1$


Proof

Recall the definition of lexicographic order:

Let $\struct {S_1, \preccurlyeq_1}$ and $\struct {S_2, \preccurlyeq_2}$ be ordered sets.

The lexicographic order $\struct {S_1, \preccurlyeq_1} \otimes^l \struct {S_2, \preccurlyeq_2}$ on $\struct {S_1, \preccurlyeq_1}$ and $\struct {S_2, \preccurlyeq_2}$ is the ordered set $\struct {T, \preccurlyeq_l}$ where:

$T := S_1 \times S_2$, that is, the Cartesian product of $S_1$ and $S_2$
$\preccurlyeq_l$ is the relation defined on $T$ as:
$\tuple {x_1, x_2} \preccurlyeq_l \tuple {y_1, y_2} \iff \tuple {x_1 \prec_1 y_1} \lor \paren {x_1 = y_1 \land x_2 \preccurlyeq_2 y_2}$


Then:

\(\ds \tuple {x_1, x_2}\) \(\preccurlyeq_l\) \(\ds \tuple {y_1, y_2}\) Definition of Upper Bound of Set
\(\ds \leadsto \ \ \) \(\ds x_1\) \(\prec_1\) \(\ds y_1\) Definition of Lexicographic Order
\(\, \ds \lor \, \) \(\ds \leftparen {x_1 = y_1}\) \(\land\) \(\ds \rightparen {x_2 \preccurlyeq_2 y_2}\)
\(\ds \leadsto \ \ \) \(\ds x_1\) \(\prec_1\) \(\ds y_1\)
\(\, \ds \lor \, \) \(\ds x_1\) \(=\) \(\ds y_1\)
\(\ds \leadsto \ \ \) \(\ds x_1\) \(\preccurlyeq_1\) \(\ds y_1\) Definition of $\preccurlyeq_1$

$\blacksquare$