Conditions under which Commutative Semigroup is Group/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Conditions under which Commutative Semigroup is Group

Suppose the following:

Let $\struct {S, \circ}$ be a commutative semigroup.


Let $\struct {S, \circ}$ have the following properties:

\((1)\)   $:$     \(\ds \forall x \in S: \exists y \in S:\) \(\ds y \circ x = x \)      
\((2)\)   $:$     \(\ds \forall x, y \in S:\) \(\ds y \circ x = x \implies \exists z \in S: z \circ x = y \)      


Then:

If $y \circ x = x = y' \circ x$, then $y = y'$.


Proof

\(\ds y \circ x\) \(=\) \(\, \ds x \, \) \(\, \ds = \, \) \(\ds y' \circ x\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds \paren {y \circ x} \circ z\) \(=\) \(\, \ds x \circ z \, \) \(\, \ds = \, \) \(\ds \paren {y' \circ x} \circ z\) where $z \circ x = y$ from $(2)$
\(\ds \leadsto \ \ \) \(\ds y \circ \paren {x \circ z}\) \(=\) \(\, \ds x \circ z \, \) \(\, \ds = \, \) \(\ds y' \circ \paren {x \circ z}\) Semigroup Axiom $\text S 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds y \circ \paren {z \circ x}\) \(=\) \(\, \ds z \circ x \, \) \(\, \ds = \, \) \(\ds y' \circ \paren {z \circ x}\) Definition of Commutative Semigroup
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \) \(\) \(\, \ds y \, \) \(\, \ds = \, \) \(\ds y' \circ y\) from $(2)$


Similarly:

\(\ds y' \circ x\) \(=\) \(\, \ds x \, \) \(\, \ds = \, \) \(\ds y \circ x\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds \paren {y' \circ x} \circ z'\) \(=\) \(\, \ds x \circ z' \, \) \(\, \ds = \, \) \(\ds \paren {y \circ x} \circ z'\) where $z' \circ x = y'$ from $(2)$
\(\ds \leadsto \ \ \) \(\ds y \circ \paren {x \circ z'}\) \(=\) \(\, \ds x \circ z' \, \) \(\, \ds = \, \) \(\ds y' \circ \paren {x \circ z'}\) Semigroup Axiom $\text S 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds y \circ \paren {z' \circ x}\) \(=\) \(\, \ds z' \circ x \, \) \(\, \ds = \, \) \(\ds y' \circ \paren {z' \circ x}\) Definition of Commutative Semigroup
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \) \(\) \(\, \ds y' \, \) \(\, \ds = \, \) \(\ds y \circ y'\) from $(2)$


Thus we have:

\(\ds y\) \(=\) \(\ds y' \circ y\) from $(3)$
\(\ds \) \(=\) \(\ds y \circ y'\) Definition of Commutative Semigroup
\(\ds \) \(=\) \(\ds y'\) from $(4)$

$\blacksquare$


Sources