Confocal Conics are Self-Orthogonal
Jump to navigation
Jump to search
Theorem
The confocal conics defined by:
- $\quad \dfrac {x^2} {a^2} + \dfrac {y^2} {a^2 - c^2} = 1$
forms a family of orthogonal trajectories which is self-orthogonal.
Proof
Consider:
- $(1): \quad \dfrac {x^2} {a^2} + \dfrac {y^2} {a^2 - c^2} = 1$
From Equation of Confocal Ellipses: Formulation 2:
- $(1)$ defines an ellipse when $a^2 > c^2$.
From Equation of Confocal Hyperbolas: Formulation 2:
- $(1)$ defines a hyperbola when $a^2 < c^2$.
Thus it is seen that $(1)$ is that of a conic section.
We use the technique of formation of ordinary differential equation by elimination.
Differentiating with respect to $x$ gives:
- $\dfrac {2 x} {a^2} + \dfrac {2 y} {a^2 - c^2} \dfrac {\d y} {\d x} = 0$
so
- $\dfrac {\d y} {\d x} = - \dfrac {a^2 - c^2} {a^2} \dfrac x y$
Now we need to eliminate $c$ from the above.
We go back to $(1)$:
\(\ds \frac {x^2} {a^2} + \frac {y^2} {a^2 - c^2}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {y^2} {a^2 - c^2}\) | \(=\) | \(\ds 1 - \frac {x^2} {a^2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^2 - x^2}{a^2}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^2 - c^2\) | \(=\) | \(\ds \frac {a^2 y^2} {a^2 - x^2}\) |
Substituting for $a^2 - c^2$:
\(\ds \dfrac {\d y} {\d x}\) | \(=\) | \(\ds -\frac {a^2 y^2} {a^2 \paren {a^2 - x^2} } \frac x y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x y} {a^2 - x^2}\) |
This is separable, so separate it:
- $\ds \int \frac {\d y} y = -\int \frac {x \rd x} {a^2 - x^2}$
which leads to:
\(\ds \ln y\) | \(=\) | \(\ds \frac 1 2 \, \map \ln {a^2 - x^2} + \ln k\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \ln y\) | \(=\) | \(\ds \map \ln {a^2 - x^2} + 2 \ln k\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln y^2\) | \(=\) | \(\ds \map \ln {a^2 - x^2} + \ln k^2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln y^2\) | \(=\) | \(\ds \map \ln {k^2 \paren {a^2 - x^2} }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y^2\) | \(=\) | \(\ds k^2 \paren {a^2 - x^2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y^2 + k^2 x^2\) | \(=\) | \(\ds a^2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {x^2} {a^2} + \frac {y^2} {k^2 a^2}\) | \(=\) | \(\ds 1\) |
Now $k^2$ is still arbitrary at this point, so set:
- $k^2 = \dfrac {a^2 - c^2} {a^2}$
Substituting this into the above gives us:
- $\dfrac {x^2} {a^2} + \dfrac {y^2} {a^2 - c^2} = 1$
which is $(1)$.
Hence the result by definition of self-orthogonal.
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $1$: The Nature of Differential Equations: : Miscellaneous Problems for Chapter $1$: $6$