Congruence by Divisor of Modulus/Integer Modulus

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $r, s \in \Z$ be integers.

Let $a, b \in \Z$ such that $a$ is congruent modulo $r s$ to $b$, that is:

$a \equiv b \pmod {r s}$


Then:

$a \equiv b \pmod r$

and:

$a \equiv b \pmod s$


Proof

\(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod {r s}\)
\(\ds \leadsto \ \ \) \(\ds a - b\) \(=\) \(\ds q r s\) Definition of Congruence Modulo Integer
\(\ds \leadsto \ \ \) \(\ds a - b\) \(=\) \(\ds \paren {q r} s\)
\(\, \ds \land \, \) \(\ds a - b\) \(=\) \(\ds \paren {q s} r\)
\(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod r\) Definition of Congruence Modulo Integer: $q s$ is an integer
\(\, \ds \land \, \) \(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod s\) Definition of Congruence Modulo Integer: $q r$ is an integer

$\blacksquare$


Sources