Conjugacy Action on Subsets is Group Action

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\powerset G$ be the set of all subgroups of $G$.

For any $S \in \powerset G$ and for any $g \in G$, the conjugacy action:

$g * S := g \circ S \circ g^{-1}$

is a group action.


Proof

By Group Axiom $\text G 2$: Existence of Identity Element, $e \in G$, thus:

\(\ds e * S\) \(=\) \(\ds e \circ S \circ e^{-1}\) Definition of $*$
\(\ds \) \(=\) \(\ds S\) Definition of Identity Element

Thus Group Action Axiom $\text {GA} 2$ is seen to be fulfilled.


Then:

\(\ds \paren {g_1 \circ g_2} * S\) \(=\) \(\ds \paren {g_1 \circ g_2} \circ S \circ \paren {g_1 \circ g_2}^{-1}\) Definition of $*$
\(\ds \) \(=\) \(\ds g_1 \circ g_2 \circ S \circ \paren {g_2^{-1} \circ g_1^{-1} }\) Inverse of Group Product
\(\ds \) \(=\) \(\ds g_1 \circ \paren {g_2 \circ S \circ g_2^{-1} } \circ g_1^{-1}\) Group Axiom $\text G 1$: Associativity
\(\ds \) \(=\) \(\ds g_1 * \paren {g_2 \circ S \circ g_2^{-1} }\) Definition of $*$
\(\ds \) \(=\) \(\ds g_1 * \paren {g_2 * S}\) Definition of $*$

Thus Group Action Axiom $\text {GA} 1$ is shown to be fulfilled.

$\blacksquare$


Sources