Conjugacy Class/Examples

From ProofWiki
Jump to: navigation, search

Examples of Conjugacy Classes

Conjugacy Classes of Symmetric Group on $3$ Letters

Let $S_3$ denote the Symmetric Group on 3 Letters, whose Cayley table is given as:

$\begin{array}{c|cccccc} \circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$


The conjugacy classes of $S_3$ are:

\(\displaystyle \) \(\) \(\displaystyle \set e\) $\quad$ $\quad$
\(\displaystyle \) \(\) \(\displaystyle \set {\tuple {123}, \tuple {132} }\) $\quad$ $\quad$
\(\displaystyle \) \(\) \(\displaystyle \set {\tuple {12}, \tuple {13}, \tuple {23} }\) $\quad$ $\quad$