Constant Operation is Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $x \sqbrk c y = c$ be a constant operation on $S$.


Then $\sqbrk c$ is an associative operation:

$\forall x, y, z \in S: \paren {x \sqbrk c y} \sqbrk c z = x \sqbrk c \paren {y \sqbrk c z}$


Proof

\(\ds \paren {x \sqbrk c y} \sqbrk c z\) \(=\) \(\ds c \sqbrk c z\) Definition of Constant Operation
\(\ds \) \(=\) \(\ds c\) Definition of Constant Operation


\(\ds x \sqbrk c \paren {y \sqbrk c z}\) \(=\) \(\ds x \sqbrk c c\) Definition of Constant Operation
\(\ds \) \(=\) \(\ds c\) Definition of Constant Operation

$\blacksquare$