Construction of Inverse Completion/Equivalence Relation/Equivalence Class of Equal Elements
Theorem
Let $\struct {S, \circ}$ be a commutative semigroup which has cancellable elements.
Let $\struct {C, \circ {\restriction_C} } \subseteq \struct {S, \circ}$ be the subsemigroup of cancellable elements of $\struct {S, \circ}$, where $\circ {\restriction_C}$ denotes the restriction of $\circ$ to $C$.
Let $\struct {S \times C, \oplus}$ be the external direct product of $\struct {S, \circ}$ and $\struct {C, \circ {\restriction_C} }$, where $\oplus$ is the operation on $S \times C$ induced by $\circ$ on $S$ and $\circ {\restriction_C}$ on $C$.
Let $\boxtimes$ be the cross-relation on $S \times C$, defined as:
- $\tuple {x_1, y_1} \boxtimes \tuple {x_2, y_2} \iff x_1 \circ y_2 = x_2 \circ y_1$
Then:
- $\forall c, d \in C: \tuple {c, c} \boxtimes \tuple {d, d}$
Proof
From Semigroup is Subsemigroup of Itself, $\struct {S, \circ}$ is a subsemigroup of $\struct {S, \circ}$.
Also from Semigroup is Subsemigroup of Itself, $\struct {C, \circ {\restriction_C} }$ is a subsemigroup of $\struct {C, \circ {\restriction_C} }$.
The result follows from Equivalence Class of Equal Elements of Cross-Relation.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {IV}$: Rings and Fields: $\S 20$: The Integers