# Continued Fraction Expansion of Irrational Square Root/Example

Jump to navigation
Jump to search

## Contents

## Examples of Continued Fraction Expansion of Irrational Square Root

\(\displaystyle \sqrt 2\) | \(=\) | \(\displaystyle \left[{1, \left \langle{2}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt 3\) | \(=\) | \(\displaystyle \left[{1, \left \langle{1, 2}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt 5\) | \(=\) | \(\displaystyle \left[{2, \left \langle{4}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt 6\) | \(=\) | \(\displaystyle \left[{2, \left \langle{2, 4}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt 7\) | \(=\) | \(\displaystyle \left[{2, \left \langle{1, 1, 1, 4}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt {13}\) | \(=\) | \(\displaystyle \left[{3, \left \langle{1, 1, 1, 1, 6}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt {19}\) | \(=\) | \(\displaystyle \left[{4, \left \langle{2, 1, 3, 1, 2, 8}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt {28}\) | \(=\) | \(\displaystyle \left[{5, \left \langle{3, 2, 3, 10}\right \rangle}\right]\) | |||||||||||

\(\displaystyle \sqrt {31}\) | \(=\) | \(\displaystyle \left[{5, \left \langle{1, 1, 3, 5, 3, 1, 1, 10}\right \rangle}\right]\) |

### Continued Fraction Expansion of $\sqrt 2$

The continued fraction expansion of the square root of $2$ is given by:

- $\sqrt 2 = \sqbrk {1, \sequence 2}$

### Continued Fraction Expansion of $\sqrt {13}$

The continued fraction expansion of the square root of $13$ is given by:

- $\sqrt {13} = \sqbrk {3, \sequence {1, 1, 1, 1, 6} }$

### Continued Fraction Expansion of $\sqrt {29}$

The continued fraction expansion of the square root of $29$ is given by:

- $\sqrt {29} = \sqbrk {5, \sequence {2, 1, 1, 2, 10} }$

### Continued Fraction Expansion of $\sqrt {61}$

The continued fraction expansion of the square root of $61$ is given by:

- $\sqrt {61} = \sqbrk {7, \sequence {1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14} }$