# Continued Fraction Expansion of Irrational Square Root/Example/2

Jump to navigation
Jump to search

## Examples of Continued Fraction Expansion of Irrational Square Root

The continued fraction expansion of the square root of $2$ is given by:

- $\sqrt 2 = \sqbrk {1, \sequence 2}$

This sequence is A040000 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).

## Proof

\(\displaystyle \sqrt 2\) | \(=\) | \(\displaystyle 1 + \paren {\sqrt 2 − 1}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac {\paren {\sqrt 2 − 1} \paren {\sqrt 2 + 1} } {\sqrt 2 + 1}\) | multiplying top and bottom by $\sqrt 2 + 1$ | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac {\paren {\sqrt 2}^2 − 1^2} {\sqrt 2 + 1}\) | Difference of Two Squares | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac 1 {1 + \sqrt 2}\) | as $\paren {\sqrt 2}^2 − 1^2 = 2 - 1 = 1$ |

Thus it is possible to replace $\sqrt 2$ recursively:

\(\displaystyle \sqrt 2\) | \(=\) | \(\displaystyle 1 + \frac 1 {1 + \sqrt 2}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac 1 {1 + \paren {1 + \cfrac 1 {1 + \sqrt 2} } }\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac 1 {2 + \cfrac 1 {1 + \sqrt 2} }\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac 1 {2 + \cfrac 1 {1 + \paren {1 + \cfrac 1 {1 + \sqrt 2} } } }\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \frac 1 {2 + \cfrac 1 {2 + \cfrac 1 {1 + \sqrt 2} } }\) |

The pattern repeats indefinitely, producing the continued fraction expansion:

- $\sqrt 2 = \sqbrk {1, 2, 2, 2, \ldots} = \sqbrk {1, \sequence 2}$

$\blacksquare$