Continued Fraction Expansion of Irrational Square Root/Examples/13/Convergents

From ProofWiki
Jump to navigation Jump to search

Convergents to Continued Fraction Expansion of $\sqrt {13}$

The sequence of convergents to the continued fraction expansion of the square root of $13$ begins:

$\dfrac 3 1, \dfrac 4 1, \dfrac 7 2, \dfrac {11} 3, \dfrac {18} 5, \dfrac {119} {33}, \dfrac {137} {38}, \dfrac {256} {71}, \dfrac {393} {109}, \dfrac {649} {180}, \ldots$

The numerators form sequence A041018 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).

The denominators form sequence A041019 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Proof

Let $\sqbrk {a_0, a_1, a_2, \ldots}$ be its continued fraction expansion.

Let $\sequence {p_n}_{n \mathop \ge 0}$ and $\sequence {q_n}_{n \mathop \ge 0}$ be its numerators and denominators.

Then the $n$th convergent is $\dfrac {p_n} {q_n}$.

By definition:

$p_k = \begin {cases} a_0 & : k = 0 \\

a_0 a_1 + 1 & : k = 1 \\ a_k p_{k - 1} + p_{k - 2} & : k > 1 \end {cases}$

$q_k = \begin {cases} 1 & : k = 0 \\

a_1 & : k = 1 \\ a_k q_{k - 1} + q_{k - 2} & : k > 1 \end {cases}$


From Continued Fraction Expansion of $\sqrt {13}$:

$\sqrt {13} = \sqbrk {3, \sequence {1, 1, 1, 1, 6} }$


Thus the convergents are assembled:


$k$ $a_k$ $p_k = a_k p_{k - 1} + p_{k - 2}$ $q_k = a_k q_{k - 1} + q_{k - 2}$ $\dfrac {p_k} {q_k}$ Decimal value
$0$ $3$ $3$ $1$ $\dfrac { 3 } 1$ $3$
$1$ $1$ $3 \times 1 + 1 = 4$ $1$ $\dfrac { 4 } { 1 }$ $4$
$2$ $1$ $1 \times 4 + 3 = 7$ $1 \times 1 + 1 = 2$ $\dfrac { 7 } { 2 }$ $3.5$
$3$ $1$ $1 \times 7 + 4 = 11$ $1 \times 2 + 1 = 3$ $\dfrac { 11 } { 3 }$ $3.6666666667$
$4$ $1$ $1 \times 11 + 7 = 18$ $1 \times 3 + 2 = 5$ $\dfrac { 18 } { 5 }$ $3.6$
$5$ $6$ $6 \times 18 + 11 = 119$ $6 \times 5 + 3 = 33$ $\dfrac { 119 } { 33 }$ $3.6060606061$
$6$ $1$ $1 \times 119 + 18 = 137$ $1 \times 33 + 5 = 38$ $\dfrac { 137 } { 38 }$ $3.6052631579$
$7$ $1$ $1 \times 137 + 119 = 256$ $1 \times 38 + 33 = 71$ $\dfrac { 256 } { 71 }$ $3.6056338028$
$8$ $1$ $1 \times 256 + 137 = 393$ $1 \times 71 + 38 = 109$ $\dfrac { 393 } { 109 }$ $3.6055045872$
$9$ $1$ $1 \times 393 + 256 = 649$ $1 \times 109 + 71 = 180$ $\dfrac { 649 } { 180 }$ $3.6055555556$

$\blacksquare$