Continuous Function from Compact Hausdorff Space to Itself Fixes a Non-Empty Set

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \tau}$ be a compact Hausdorff space.

Let $f : X \to X$ be a continuous function.


Then there exists a non-empty subset $A \subseteq X$ such that:

$f \sqbrk A = A$


Proof

Define a sequence of sets $\sequence {X_i}_{i \mathop \in \N}$ by:

$X_i = \begin{cases} X & : i = 1 \\ f \sqbrk {X_{i - 1} } & : i \ge 2 \end{cases}$

Since:

$f \sqbrk X \subseteq X$

we have:

$X_i \subseteq X$

for each $i \in \N$.

Define:

$\ds A = \bigcap_{n \mathop = 1}^\infty X_n$

We have:

\(\ds A\) \(=\) \(\ds \bigcap_{n \mathop = 1}^\infty X_n\)
\(\ds \) \(=\) \(\ds X_1 \cap \paren {\bigcap_{n \mathop = 2}^\infty X_n}\)
\(\ds \) \(=\) \(\ds \bigcap_{n \mathop = 2}^\infty X_n\)

We aim to show that:

$f \sqbrk A = A$


Lemma 1

$X_i$ is closed
$X_i$ is non-empty
$X_{i + 1} \subseteq X_i$.

$\Box$


Since $X_{i + 1} \subseteq X_i$ for all $i \in \N$, we can apply Intersection of Nested Closed Subsets of Compact Space is Non-Empty to obtain that:

$A$ is non-empty.


We then have:

\(\ds f \sqbrk A\) \(=\) \(\ds f \sqbrk {\bigcap_{n \mathop = 1}^\infty X_n}\)
\(\ds \) \(\subseteq\) \(\ds \bigcap_{n \mathop = 1}^\infty f \sqbrk {X_n}\) Image of Intersection under Mapping: General Result
\(\ds \) \(=\) \(\ds \bigcap_{n \mathop = 1}^\infty X_{n + 1}\)
\(\ds \) \(=\) \(\ds \bigcap_{n \mathop = 2}^\infty X_n\)
\(\ds \) \(=\) \(\ds A\)

so:

$f \sqbrk A \subseteq A$

It remains to show that:

$A \subseteq f \sqbrk A$


Lemma 2

$A \subseteq f \sqbrk A$

$\Box$


We then have:

$A = f \sqbrk A$

as required.

$\blacksquare$