# Continuum Hypothesis/Historical Note

## Historical Note on Continuum Hypothesis

The **Continuum Hypothesis** was originally conjectured by Georg Cantor.

In $1940$, Kurt Gödel showed that it is impossible to disprove the **Continuum Hypothesis** (CH for short) in Zermelo-Fraenkel set theory (ZF) with or without the Axiom of Choice (ZFC).

In $1963$, Paul Cohen showed that it is impossible to prove **CH** in ZF or ZFC.

These results together show that **CH** is independent of both ZF and ZFC.

Note, however, that these results do not settle **CH** one way or the other, nor do they establish that **CH** is undecidable.

They merely indicate that **CH** cannot be proved within the scope of ZF or ZFC, and that any further progress will depend on further insights on the nature of sets and their cardinality.

It has been suggested that a key factor contributing towards the difficulty in resolving this question may be the fact that Gödel's Incompleteness Theorems prove that there is no possible formal axiomatization of set theory that can represent the entire spread of possible properties that can uniquely specify any possible set.

## Sources

- 2010: Raymond M. Smullyan and Melvin Fitting:
*Set Theory and the Continuum Problem*(revised ed.) ... (previous) ... (next): Chapter $1$: General Background: $\S 5$ The continuum problem