Convergent Product Satisfies Cauchy Criterion
Jump to navigation
Jump to search
Theorem
Let $\struct {\mathbb K, \norm {\,\cdot\,} }$ be a valued field.
Let the infinite product $\ds \prod_{n \mathop = 1}^\infty a_n$ be convergent.
Then it satisfies Cauchy's criterion for products.
Proof
Let $\epsilon > 0$.
Let $n_0 \in \N$ be such that $\ds \prod_{n \mathop = n_0}^\infty a_n$ converges to some $a \in \mathbb K \setminus \set 0$.
By Convergent Sequence is Cauchy Sequence, there exists $N_0 \ge n_0$ such that:
- $\ds \norm {\prod_{n \mathop = n_0}^k a_n - \prod_{n \mathop = n_0}^l a_n} \le \epsilon$
for $k, l \ge N_0$.
By Sequence Converges to Within Half Limit, there exists $N_1 \ge n_0$ such that:
- $\ds \norm {\prod_{n \mathop = n_0}^M a_n} \ge \frac {\norm a}2$
for $M \ge N_1$.
Let $N = \max \set {N_0, N_1}$.
For $N + 1 \le k \le l$:
\(\ds \norm {\prod_{n \mathop = k}^l a_n - 1}\) | \(=\) | \(\ds \norm {\frac {\prod_{n \mathop = n_0}^l a_n - \prod_{n \mathop = n_0}^{k - 1} a_n} {\prod_{n \mathop = n_0}^{k - 1} } }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \frac {2 \epsilon} {\norm{a} }\) | $l, k - 1 \ge N_0$ and $k - 1 \ge N_1$ |
Hence the result.
$\blacksquare$