# Convex Set Characterization (Order Theory) It has been suggested that this article or section be renamed: to something standard for this site One may discuss this suggestion on the talk page.

## Theorem

Let $\left({S, \preceq, \tau}\right)$ be an ordered set.

Let $C \subseteq S$.

The following are equivalent:

 $(1)$ $:$ $C$ is convex. $(2)$ $:$ $C$ is the intersection of an upper set with a lower set. $(3)$ $:$ $C$ is the intersection of its upper closure with its lower closure.

## Proof

### $(2)$ implies $(1)$

$\Box$

### $(1)$ implies $(3)$

Let $C$ be a convex set in $S$.

Let $U$ and $L$ be the upper and lower closures of $C$, respectively.

Since $C \subseteq U$ and $C \subseteq L$:

$C \subseteq U \cap L$.

Let $p \in U \cap L$.

Then $a \preceq p \preceq b$ for some $a, b \in C$.

Since $C$ is convex, $p \in C$.

Since this holds for all $p \in U \cap L$:

$U \cap L \subseteq C$.

Since we know that $C \subseteq U \cap L$, $C = U \cap L$.

$\Box$

### $(3)$ implies $(2)$

Follows from Upper Closure is Upper Set and Lower Closure is Lower Set.

$\blacksquare$