Correspondence Theorem (Group Theory)

From ProofWiki
Jump to navigation Jump to search

This proof is about Correspondence Theorem in the context of Group Theory. For other uses, see Correspondence Theorem.


Let $G$ be a group.

Let $N \lhd G$ be a normal subgroup of $G$.

Then every subgroup of the quotient group $G / N$ is of the form $H / N = \set {h N: h \in H}$, where $N \le H \le G$.

Conversely, if $N \le H \le G$ then $H / N \le G / N$.

The correspondence between subgroups of $G / N$ and subgroups of $G$ containing $N$ is a bijection.

This bijection maps normal subgroups of $G / N$ onto normal subgroups of $G$ which contain $N$.


Let $H'$ be a subgroup of $G / N$, so that it consists of a certain set $\set {h N}$ of left cosets of $N$ in $G$.

Let us define the subset $\map \beta {H'} \subseteq G$:

$\map \beta {H'} = \set {g \in G: g N \in H'}$

Then clearly:

$N \subseteq \map \beta {H'}$


$e_G \in N$


$e_G \in \map \beta {H'}$

Let $x, y \in \map \beta {H'}$. Then:

\(\ds x, y\) \(\in\) \(\ds \map \beta {H'}\)
\(\ds \leadsto \ \ \) \(\ds x N, y N\) \(\in\) \(\ds H'\) Definition of $\beta$
\(\ds \leadsto \ \ \) \(\ds \paren {x N} \paren {y N}\) \(=\) \(\ds x y N \in H'\) Definition of Quotient Group: $G / N$ and as $H'$ is a subgroup of $G / N$
\(\ds \leadsto \ \ \) \(\ds x y\) \(\in\) \(\ds \map \beta {H'}\) Definition of $\beta$

We also have, from Quotient Group is Group:

$\paren {x N}^{-1} = x^{-1} N \implies x^{-1} \in \map \beta {H'}$

Thus, by the Two-Step Subgroup Test, $\map \beta {H'} \le G$ that contains $N$.

Conversely, let $H$ be such that $N \le H \le G$.

Let $\map \alpha H = \set {h N: h \in H} \subseteq G / N$.

It is easily checked that $\map \alpha H \le G / N$.

Now, let $X$ be the set of subgroups of $G$ containing $N$ and $Y$ be the set of all subgroups of $G / N$.

We now need to show that $\alpha: X \to Y$ is a bijection.

We do this by checking that $\beta: Y \to X$ is the inverse of $\alpha$.

To do this, we show that $\alpha \circ \beta = I_Y$ and $\beta \circ \alpha = I_X$.

Suppose $N \le H \le G$. Then:

\(\ds \map {\paren {\beta \circ \alpha} } H\) \(=\) \(\ds \map \beta {H / N}\) Definition of $\alpha$
\(\ds \) \(=\) \(\ds \set {g \in G: g N \in H / N}\) Definition of $\beta$
\(\ds \) \(=\) \(\ds H\) Definition of Coset $H / N$

Thus $\beta \circ \alpha = I_X$.

Now let $H' \le G / N$. Then:

\(\ds \map {\paren {\alpha \circ \beta} } {H'}\) \(=\) \(\ds \map \alpha {\set {g \in G: g N \in H'} }\) Definition of $\beta$
\(\ds \) \(=\) \(\ds \set {g N \in H'}\) Definition of $\alpha$
\(\ds \) \(=\) \(\ds H'\) Definition of $H'$

Thus $\alpha \circ \beta = I_Y$.

So, by Bijection iff Inverse is Bijection, $\alpha$ is a bijection.

Now let $H \lhd G$ such that $N \le H$.

We show that $\map \alpha H = H / N \lhd G / N$.

This follows by definition 3 of Normal Subgroup because: for any $h \in H, g \in G$

$\paren {g N} \paren {h N} \paren {g N}^{-1} = g h g^{-1} N \in H / N$
$\paren {g N}^{-1} \paren {h N} \paren {g N} = g^{-1} h g N \in H / N$

Conversely, let $H' \lhd G / N$.


$\map \beta {H'} = \set {g \in G : g N \in H'}$

Hence, for any $x \in G$ we have:

\(\ds x \map \beta {H'} x^{-1}\) \(=\) \(\ds \set {x g x^{-1} \in G: g N \in H'}\)
\(\ds \) \(=\) \(\ds \set {y \in G: x^{-1} y x N \in H'}\)

Now for any $h' \in \map \beta {H'}$, we have:

$h'N \in H'$

From $H' \lhd G / N$:

For all $x \in G$:

$\paren {x N}^{-1} \paren {h' N} \paren {x N} \in H'$

From $N \lhd G$:

$x^{-1} h' x N \in H'$

This implies:

$h' \in x \map \beta {H'} x^{-1}$


$\map \beta {H'} \subseteq x \map \beta {H'} x^{-1}$

Similarly, we can also show:

$\map \beta {H'} \subseteq x^{-1} \map \beta {H'} x$

Hence by definition 4 of Normal Subgroup:

$\map \beta {H'} \lhd G$