Correspondence between Abelian Groups and Z-Modules/Homomorphisms

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G, H$ be abelian groups.

Let $f : G \to H$ be a mapping.


The following are equivalent:

  1. $f$ is a group homomorphism.
  2. $f$ is a $\Z$-module homomorphism between the $\Z$-modules associated with $G$ and $H$.


Proof