Cosine Exponential Formulation
Jump to navigation
Jump to search
Theorem
For any complex number $z \in \C$:
- $\cos z = \dfrac {\map \exp {i z} + \map \exp {-i z} } 2$
where:
- $\exp z$ denotes the exponential function
- $\cos z$ denotes the complex cosine function
- $i$ denotes the inaginary unit.
Real Domain
This result is often presented and proved separately for arguments in the real domain:
- $\cos x = \dfrac {e^{i x} + e^{-i x} } 2$
Proof 1
Recall the definition of the cosine function:
\(\ds \cos z\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {z^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac {z^2} {2!} + \frac {z^4} {4!} - \frac {z^6} {6!} + \cdots + \paren {-1}^n \frac {z^{2 n} } {\paren {2 n}!} + \cdots\) |
Recall the definition of the exponential as a power series:
\(\ds \exp z\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {z^n} {n!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \frac z {1!} + \frac {z^2} {2!} + \frac {z^3} {3!} + \cdots + \frac {z^n} {n!} + \cdots\) |
Then, starting from the right hand side:
\(\ds \frac {\exp \paren {i z} + \exp \paren {-i z} } 2\) | \(=\) | \(\ds \frac 1 2 \paren {\sum_{n \mathop = 0}^\infty \frac {\paren {i z}^n} {n!} + \sum_{n \mathop = 0}^\infty \frac {\paren {-i z}^n} {n!} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \paren {\frac {\paren {i z}^n + \paren {-i z}^n} {n!} }\) | Cosine Function is Absolutely Convergent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \paren {\frac {\paren {i z}^{2 n} + \paren {-i z}^{2 n} } {\paren {2 n}!} + \frac {\paren {i z}^{2 n + 1} + \paren {-i z}^{2 n + 1} } {\paren {2 n + 1}!} }\) | split into even and odd $n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \frac {\paren {i z}^{2 n} + \paren {-i z}^{2 n} } {\paren {2 n}!}\) | $\paren {-i z}^{2 n + 1} = -\paren {i z}^{2 n + 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \frac {2 \paren {i z}^{2 n} } {\paren {2 n}!}\) | $\left({ -1 }\right)^{2n} = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {i z}^{2 n} } {\paren {2 n}!}\) | cancel $2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {z^{2 n} } {\paren {2 n}!}\) | $i^{2 n} = \paren {-1}^n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos z\) |
$\blacksquare$
Proof 2
Recall Euler's Formula:
- $\exp \paren {i z} = \cos z + i \sin z$
Then, starting from the right hand side:
\(\ds \frac {\exp \paren {i z} + \exp \paren {-i z} } 2\) | \(=\) | \(\ds \frac {\cos z + i \sin z + \cos \paren {-z} + i \sin \paren {-z} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\cos z + \cos \paren {-z} } 2\) | Sine Function is Odd | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \cos z} 2\) | Cosine Function is Even | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos z\) |
$\blacksquare$
Proof 3
\(\text {(1)}: \quad\) | \(\ds \exp \paren {i z}\) | \(=\) | \(\ds \cos z + i \sin z\) | Euler's Formula | ||||||||||
\(\text {(2)}: \quad\) | \(\ds \exp \paren {-i z}\) | \(=\) | \(\ds \cos z - i \sin z\) | Euler's Formula: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exp \paren {i z} + \exp \paren {-i z}\) | \(=\) | \(\ds \paren {\cos z + i \sin z} + \paren {\cos z - i \sin z}\) | $(1) + (2)$ | ||||||||||
\(\ds \) | \(=\) | \(\ds 2 \cos z\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\exp \paren {i z} + \exp \paren {-i z} } 2\) | \(=\) | \(\ds \cos z\) |
$\blacksquare$
Also presented as
This result can also be presented as:
- $\cos z = \dfrac 1 2 \paren {e^{-i z} + e^{i z} }$
Also see
- Sine Exponential Formulation
- Tangent Exponential Formulation
- Cotangent Exponential Formulation
- Secant Exponential Formulation
- Cosecant Exponential Formulation
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$