Cosine Exponential Formulation/Real Domain
Theorem
For any real number $x \in \R$:
- $\cos x = \dfrac {e^{i x} + e^{-i x} } 2$
where:
- $e^{i x}$ denotes the exponential function
- $\cos x$ denotes the real cosine function
- $i$ denotes the inaginary unit.
Proof 1
Recall the definition of the real cosine function:
\(\ds \cos x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n!} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac {x^2} {2!} + \frac {x^4} {4!} - \frac {x^6} {6!} + \cdots + \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!} + \cdots\) |
Recall the definition of the exponential as a power series:
\(\ds e^x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {x^n} {n!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + x + \frac {x^2} 2 + \frac {x^3} 6 + \cdots + \frac {x^n} {n!} + \cdots\) |
Then, starting from the right hand side:
\(\ds \frac {e^{i x} + e^{-i x} } 2\) | \(=\) | \(\ds \frac 1 2 \paren {\sum_{n \mathop = 0}^\infty \frac {\paren {i x}^n} {n!} + \sum_{n \mathop = 0}^\infty \frac {\paren {-i x}^n} {n!} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \paren {\frac {\paren {i x}^n + \paren {-i x}^n} {n!} }\) | Cosine Function is Absolutely Convergent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \paren {\frac {\paren {i x}^{2 n} + \paren {-i x}^{2 n} } {\paren {2 n}!} + \frac {\paren {i x}^{2 n + 1} + \paren {-i x}^{2 n + 1} } {\paren {2 n + 1}!} }\) | split into even and odd $n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \frac {\paren {i x}^{2 n} + \paren {-i x}^{2 n} } {\paren {2 n}!}\) | $\paren {-i x}^{2 n + 1} = -\paren {i x}^{2 n + 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sum_{n \mathop = 0}^\infty \frac {2 \paren {i x}^{2 n} } {\paren {2 n}!}\) | $\left({ -1 }\right)^{2n} = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {i x}^{2 n} } {\paren {2 n}!}\) | cancel $2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!}\) | $i^{2 n} = \paren {-1}^n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x\) |
$\blacksquare$
Proof 2
Recall Euler's Formula:
- $e^{i x} = \cos x + i \sin x$
Then, starting from the right hand side:
\(\ds \frac {e^{i x} + e^{-i x} } 2\) | \(=\) | \(\ds \frac {\cos x + i \sin x + \cos \paren {-x} + i \sin \paren {-x} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\cos x + \cos \paren {-x} } 2\) | Sine Function is Odd | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \cos x} 2\) | Cosine Function is Even | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x\) |
$\blacksquare$
Proof 3
\(\text {(1)}: \quad\) | \(\ds e^{i x}\) | \(=\) | \(\ds \cos x + i \sin x\) | Euler's Formula | ||||||||||
\(\text {(2)}: \quad\) | \(\ds e^{-i x}\) | \(=\) | \(\ds \cos x - i \sin x\) | Euler's Formula: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{i x} + e^{-i x}\) | \(=\) | \(\ds \paren {\cos x + i \sin x} + \paren {\cos x - i \sin x}\) | $(1) + (2)$ | ||||||||||
\(\ds \) | \(=\) | \(\ds 2 \cos x\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {e^{i x} + e^{-i x} } 2\) | \(=\) | \(\ds \cos x\) |
$\blacksquare$
Proof 4
Consider the differential equation:
- $(1): \quad D^2_x \map f x = -\map f x$
subject to the initial conditions:
- $(2): \quad \map f 0 = 1$
- $(3): \quad D_x \map f 0 = 0$
Step 1
We will prove that $y = \cos x$ is a particular solution of $(1)$.
\(\ds y\) | \(=\) | \(\ds \cos x\) | ||||||||||||
\(\ds D^2_x y\) | \(=\) | \(\ds D^2_x \cos x\) | taking second derivative of both sides | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {D_x} {-\sin x}\) | Derivative of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map {D_x} {\sin x}\) | Derivative of Constant Multiple | |||||||||||
\(\ds \) | \(=\) | \(\ds -\cos x\) | Derivative of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -y\) |
Thus $y = \cos x$ fulfils $(1)$.
Then from Cosine of Zero is One:
- $\cos 0 = 1$
Thus $y = \cos x$ fulfils $(2)$.
Then:
\(\ds D_x \cos 0\) | \(=\) | \(\ds -\sin 0\) | Derivative of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Sine of Zero is Zero |
Thus $y = \cos x$ fulfils $(3)$.
So $y = \cos x$ is a particular solution of $(1)$.
$\Box$
Step 2
We will prove that $z = \dfrac {e^{i x} + e^{-i x} } 2$ is a particular solution of $(1)$.
\(\ds z\) | \(=\) | \(\ds \frac {e^{i x} + e^{-i x} } 2\) | ||||||||||||
\(\ds D^2_x z\) | \(=\) | \(\ds \map {D^2_x} {\frac {e^{i x} + e^{-i x} } 2}\) | taking second derivative of both sides | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {D^2_x e^{i x} + D^2_x e^{-i x} }\) | Linear Combination of Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {i D_x e^{i x} - i D_x e^{-i x} }\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {i^2 e^{i x} - i \paren {-i} e^{-i x} }\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {- e^{i x} - e^{-i x} }\) | $i^2 = -1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {e^{i x} + e^{-i x} }2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -z\) |
Thus $z = \dfrac {e^{i x} + e^{-i x} } 2$ fulfils $(1)$.
Then:
\(\ds \frac {e^{i \times 0} + e^{-i \times 0} } 2\) | \(=\) | \(\ds \frac {1 + 1} 2\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
Thus $z = \dfrac {e^{i x} + e^{-i x} } 2$ fulfils $(2)$.
Then:
\(\ds \intlimits {D_x \frac {e^{i x} + e^{-i x} } 2} {x \mathop = 0} {}\) | \(=\) | \(\ds \intlimits {\frac {i e^{i x} - i e^{-i x} } 2} {x \mathop = 0} {}\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {i - i} 2\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
Thus $z = \dfrac {e^{i x} + e^{-i x} } 2$ fulfils $(3)$.
So $z = \dfrac {e^{i x} + e^{-i x} } 2$ is a particular solution of $(1)$.
$\Box$
We have shown that $y$ and $z$ are both particular solutions of $(1)$.
But a particular solution to a differential equation is unique.
![]() | This article needs to be linked to other articles. In particular: This result definitely needs backing up with an appropriate link You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Therefore $y = z$.
That is:
- $\cos x = \dfrac {e^{i x} + e^{-i x} } 2$
$\blacksquare$
Also presented as
This result can also be presented as:
- $\cos x = \dfrac 1 2 \paren {e^{-i x} + e^{i x} }$
Also see
- Sine Exponential Formulation
- Tangent Exponential Formulation
- Cotangent Exponential Formulation
- Secant Exponential Formulation
- Cosecant Exponential Formulation
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Relationship between Exponential and Trigonometric Functions: $7.18$