Cosine Exponential Formulation/Real Domain/Proof 4
Theorem
- $\cos z = \dfrac {\map \exp {i z} + \map \exp {-i z} } 2$
Proof
Consider the differential equation:
- $(1): \quad D^2_x \map f x = -\map f x$
subject to the initial conditions:
- $(2): \quad \map f 0 = 1$
- $(3): \quad D_x \map f 0 = 0$
Step 1
We will prove that $y = \cos x$ is a particular solution of $(1)$.
\(\ds y\) | \(=\) | \(\ds \cos x\) | ||||||||||||
\(\ds D^2_x y\) | \(=\) | \(\ds D^2_x \cos x\) | taking second derivative of both sides | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {D_x} {-\sin x}\) | Derivative of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map {D_x} {\sin x}\) | Derivative of Constant Multiple | |||||||||||
\(\ds \) | \(=\) | \(\ds -\cos x\) | Derivative of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -y\) |
Thus $y = \cos x$ fulfils $(1)$.
Then from Cosine of Zero is One:
- $\cos 0 = 1$
Thus $y = \cos x$ fulfils $(2)$.
Then:
\(\ds D_x \cos 0\) | \(=\) | \(\ds -\sin 0\) | Derivative of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Sine of Zero is Zero |
Thus $y = \cos x$ fulfils $(3)$.
So $y = \cos x$ is a particular solution of $(1)$.
$\Box$
Step 2
We will prove that $z = \dfrac {e^{i x} + e^{-i x} } 2$ is a particular solution of $(1)$.
\(\ds z\) | \(=\) | \(\ds \frac {e^{i x} + e^{-i x} } 2\) | ||||||||||||
\(\ds D^2_x z\) | \(=\) | \(\ds \map {D^2_x} {\frac {e^{i x} + e^{-i x} } 2}\) | taking second derivative of both sides | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {D^2_x e^{i x} + D^2_x e^{-i x} }\) | Linear Combination of Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {i D_x e^{i x} - i D_x e^{-i x} }\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {i^2 e^{i x} - i \paren {-i} e^{-i x} }\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {- e^{i x} - e^{-i x} }\) | $i^2 = -1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {e^{i x} + e^{-i x} }2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -z\) |
Thus $z = \dfrac {e^{i x} + e^{-i x} } 2$ fulfils $(1)$.
Then:
\(\ds \frac {e^{i \times 0} + e^{-i \times 0} } 2\) | \(=\) | \(\ds \frac {1 + 1} 2\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
Thus $z = \dfrac {e^{i x} + e^{-i x} } 2$ fulfils $(2)$.
Then:
\(\ds \intlimits {D_x \frac {e^{i x} + e^{-i x} } 2} {x \mathop = 0} {}\) | \(=\) | \(\ds \intlimits {\frac {i e^{i x} - i e^{-i x} } 2} {x \mathop = 0} {}\) | Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {i - i} 2\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
Thus $z = \dfrac {e^{i x} + e^{-i x} } 2$ fulfils $(3)$.
So $z = \dfrac {e^{i x} + e^{-i x} } 2$ is a particular solution of $(1)$.
$\Box$
We have shown that $y$ and $z$ are both particular solutions of $(1)$.
But a particular solution to a differential equation is unique.
![]() | This article needs to be linked to other articles. In particular: This result definitely needs backing up with an appropriate link You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Therefore $y = z$.
That is:
- $\cos x = \dfrac {e^{i x} + e^{-i x} } 2$
$\blacksquare$