Cosine in terms of Cotangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number such that $\cos x \ne 0$.

Then:

\(\ds \cos x\) \(=\) \(\ds +\frac {\cot x} {\sqrt {1 + \cot^2 x} }\) if there exists an integer $n$ such that $2 n \pi < x < \paren {2 n + 1} \pi$
\(\ds \cos x\) \(=\) \(\ds -\frac {\cot x} {\sqrt {1 + \cot^2 x} }\) if there exists an integer $n$ such that $\paren {2 n - 1} \pi < x < 2 n \pi$

where $\cos$ denotes the real cosine function and $\cot$ denotes the real cotangent function.


Proof

\(\ds \cos x\) \(=\) \(\ds \pm \frac 1 {\sqrt {1 + \tan^2 x} }\) Cosine in terms of Tangent
\(\ds \) \(=\) \(\ds \pm \frac 1 {\sqrt {1 + \frac 1 {\cot^2 x} } }\) Cotangent is Reciprocal of Tangent
\(\ds \) \(=\) \(\ds \pm \frac {\cot x} {\sqrt {1 + \cot^2 x} }\) multiplying denominator and numerator by $\cot x$


It remains to determine the sign.


From Sign of Cosine:

\(\ds \cos x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$


From Sign of Cotangent:

\(\ds \cot x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \cot x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$


This means:

\(\text {(1)}: \quad\) \(\ds \cot x\) \(>\) \(\ds 0\) when $2 n \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\text {(2)}: \quad\) \(\ds \cot x\) \(<\) \(\ds 0\) when $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + 1} \pi$
\(\text {(3)}: \quad\) \(\ds \cot x\) \(>\) \(\ds 0\) when $\paren {2 n + 1} \pi < x < \paren {2 n + \dfrac 3 2} \pi$
\(\text {(4)}: \quad\) \(\ds \cot x\) \(<\) \(\ds 0\) when $\paren {2 n + \dfrac 3 2} \pi < x < \paren {2 n + 2} \pi$


Thus on $(1)$, $\cos x$ and $\cot x$ are the same sign:

$\cos x > 1$ and $\cot x > 1$

and so:

$\cos x = +\dfrac {\cot x} {\sqrt {1 + \cot^2 x} }$


On $(2)$, $\cos x$ and $\cot x$ are also the same sign:

$\cos x < 1$ and $\cot x < 1$

and so:

$\cos x = +\dfrac {\cot x} {\sqrt {1 + \cot^2 x} }$


On $(3)$, $\cos x$ and $\cot x$ are of opposite sign:

$\cos x < 1$ and $\cot x > 1$

and so:

$\cos x = -\dfrac {\cot x} {\sqrt {1 + \cot^2 x} }$


On $(4)$, $\cos x$ and $\cot x$ are also of opposite sign:

$\cos x > 1$ and $\cot x < 1$

and so:

$\cos x = -\dfrac {\cot x} {\sqrt {1 + \cot^2 x} }$


When $x = \paren {2 n + \dfrac 1 2} \pi$ and $x = \paren {2 n + \dfrac 3 2} \pi$, both $\cos x = 0$ and $\cot x = 0$


When $x$ is an integer $\sin x = 0$ and so $\cot x$ is undefined.

$\blacksquare$


Also see