Cosine of Complement equals Sine/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \cos {\dfrac \pi 2 - \theta} = \sin \theta$


Proof

\(\ds \map \cos {\dfrac \pi 2 - \theta}\) \(=\) \(\ds \frac 1 2 \paren {e^{i \paren {\frac \pi 2 - \theta} } + e^{-i \paren {\frac \pi 2 - \theta} } }\) Euler's Cosine Identity
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {e^{i \frac \pi 2} e^{-i \theta} + e^{-i \frac \pi 2} e^{i \theta} }\) Exponential of Sum: Complex Numbers
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\paren {\map \cos {\frac \pi 2} + i \, \map \sin {\frac \pi 2} } e^{-i \theta} + \paren {\map \cos {-\frac \pi 2} + i \, \map \sin {-\frac \pi 2} } e^{i \theta} }\) Euler's Formula
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {i e^{-i \theta} - i e^{i \theta} }\) Cosine of Right Angle, Sine of Right Angle, Cosine Function is Even, Sine Function is Odd
\(\ds \) \(=\) \(\ds \frac 1 {2 i} \paren {e^{i \theta} - e^{-i \theta} }\) Definition of Imaginary Unit
\(\ds \) \(=\) \(\ds \sin \theta\) Euler's Sine Identity

$\blacksquare$