Cosine of Integer Multiple of Argument/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{>0}$:

\(\ds \cos n \theta\) \(=\) \(\ds \cos^n \theta \paren {1 - \dbinom n 2 \paren {\tan \theta}^2 + \dbinom n 4 \paren {\tan \theta}^4 - \cdots}\)
\(\ds \) \(=\) \(\ds \cos^n \theta \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom n {2 k } \paren {\tan^{2 k } \theta}\)


Proof

By De Moivre's Formula:

$\cos n \theta + i \sin n \theta = \paren {\cos \theta + i \sin \theta}^n$

As $n \in \Z_{>0}$, we use the Binomial Theorem on the right hand side, resulting in:

$\ds \cos n \theta + i \sin n \theta = \sum_{k \mathop \ge 0} \binom n k \paren {\cos^{n - k} \theta} \paren {i \sin \theta}^k$

When $k$ is even, the expression being summed is real.

Equating the real parts of both sides of the equation, replacing $k$ with $2 k$ to make $k$ even, gives:

\(\ds \cos n \theta\) \(=\) \(\ds \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom n {2 k } \paren {\cos^{n - \paren {2 k } } \theta} \paren {\sin^{2 k } \theta}\)
\(\ds \) \(=\) \(\ds \cos^n \theta \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom n {2 k } \paren {\tan^{2 k } \theta}\) factor out $\cos^n \theta$

$\blacksquare$


Examples

Cosine of Quintuple Angle

$\map \cos {5 \theta } = \cos^5 \theta \paren {1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$


Cosine of Sextuple Angle

$\map \cos {6 \theta } = \cos^6 \theta \paren {1 - 15 \tan^2 \theta + 15 \tan^4 \theta - \tan^6 \theta}$