Cosine of Right Angle
Jump to navigation
Jump to search
Theorem
- $\cos 90 \degrees = \cos \dfrac \pi 2 = 0$
where $\cos$ denotes cosine.
Proof
A direct implementation of Cosine of Half-Integer Multiple of Pi:
- $\forall n \in \Z: \map \cos {n + \dfrac 1 2} \pi = 0$
In this case, $n = 0$ and so:
- $\cos \dfrac 1 2 \pi = 0$
$\blacksquare$
Also see
- Sine of Right Angle
- Tangent of Right Angle
- Cotangent of Right Angle
- Secant of Right Angle
- Cosecant of Right Angle
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Special angles
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Exact Values for Trigonometric Functions of Various Angles
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): trigonometric function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): trigonometric function
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Trigonometric values for some special angles
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Trigonometric values for some special angles