Cosine of Zero is One

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos 0 = 1$

where $\cos$ denotes the cosine.


Proof

Recall the definition of the cosine function:

$\displaystyle \cos x = \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!} = 1 - \frac {x^2} {2!} + \frac {x^4} {4!} - \cdots$


Thus:

$\displaystyle \cos 0 = 1 - \frac {0^2} {2!} + \frac {0^4} {4!} - \cdots = 1$

$\blacksquare$


Also see


Sources