Cotangent Exponential Formulation
Jump to navigation
Jump to search
Theorem
Let $z$ be a complex number such that:
- $\forall k\in \Z$, $z \neq k \pi$
Let $\cot z$ denote the cotangent function and $i$ denote the imaginary unit, such that:
- $i^2 = -1$
Then:
- $\cot z = i \dfrac {e^{i z} + e^{-i z} } {e^{i z} - e^{-i z} }$
Proof 1
We have, by hypothesis, that $z$ is a complex number such that:
- $\forall k \in \Z: z \ne k \pi$
Therefore:
- $\sin z \ne 0$
It follows from the definition of the complex cotangent function that:
- $\cot z$
is well-defined.
Hence:
\(\ds \cot z\) | \(=\) | \(\ds \frac {\cos z} {\sin z}\) | Definition of Complex Cotangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{i z} + e^{-i z} } 2 / \frac {e^{i z} - e^{-i z} } {2 i}\) | Sine Exponential Formulation and Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds i \frac {e^{i z} + e^{-i z} } {e^{i z} - e^{-i z} }\) | multiplying numerator and denominator by $2 i$ |
$\blacksquare$
Proof 2
We have, by hypothesis, that $z$ is a complex number such that:
- $\forall k \in \Z: z \ne k \pi$
Therefore:
- $\sin z \ne 0$
It follows from the definition of the complex cotangent function that:
- $\cot z$
is well-defined.
Hence:
\(\ds \cot z\) | \(=\) | \(\ds \frac 1 {\tan z}\) | Definition of Complex Cotangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 / \dfrac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }\) | Tangent Exponential Formulation/Formulation 2 | |||||||||||
\(\ds \) | \(=\) | \(\ds i \frac {e^{i z} + e^{-i z} } {e^{i z} - e^{-i z} }\) | Definition of Reciprocal |
$\blacksquare$
Also defined as
This result is sometimes also presented as:
- $\cot z = \dfrac {i \paren {e^{i z} + e^{-i z} } } {e^{i z} - e^{-i z} }$
Also see
- Sine Exponential Formulation
- Cosine Exponential Formulation
- Tangent Exponential Formulation
- Secant Exponential Formulation
- Cosecant Exponential Formulation
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Relationship between Exponential and Trigonometric Functions: $7.20$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$