Cotangent of Complex Number/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\cot \paren {a + b i} = \dfrac {\cos a \cosh b - i \sin a \sinh b} {\sin a \cosh b + i \cos a \sinh b}$

where:

$\cot$ denotes the complex cotangent function
$\sin$ denotes the real sine function
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function.


Proof

\(\ds \cot \paren {a + b i}\) \(=\) \(\ds \frac {\cos \paren {a + b i} } {\sin \paren {a + b i} }\) Definition of Complex Cotangent Function
\(\ds \) \(=\) \(\ds \dfrac {\cos a \cosh b - i \sin a \sinh b} {\sin a \cosh b + i \cos a \sinh b}\) Sine of Complex Number and Cosine of Complex Number

$\blacksquare$


Also see