Cotangent of Sum

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \cot {a + b} = \dfrac {\cot a \cot b - 1} {\cot b + \cot a}$

where $\cot $ is cotangent.


Corollary

$\map \cot {a - b} = \dfrac {\cot a \cot b + 1} {\cot b - \cot a}$


Proof

\(\ds \map \cot {a + b}\) \(=\) \(\ds \frac {\map \cos {a + b} } {\map \sin {a + b} }\) Cotangent is Cosine divided by Sine
\(\ds \) \(=\) \(\ds \frac {\cos a \cos b - \sin a \sin b} {\sin a \cos b + \cos a \sin b}\) Cosine of Sum and Sine of Sum
\(\ds \) \(=\) \(\ds \frac {\frac {\cos a \cos b} {\sin a \sin b} - 1} {\frac {\cos b} {\sin b} + \frac {\cos a} {\sin a} }\) dividing numerator and denominator by $\sin a \sin b$
\(\ds \) \(=\) \(\ds \frac {\cot a \cot b - 1} {\cot b + \cot a}\) Cotangent is Cosine divided by Sine

$\blacksquare$


Sources