Countably Compact Space is Countably Paracompact

From ProofWiki
Jump to navigation Jump to search


Let $T = \struct {S, \tau}$ be a countably compact space.

Then $T$ is countably paracompact.


From the definition, $T$ is countably compact if and only if every countable open cover of $S$ has a finite subcover.

From Subcover is Refinement of Cover, it follows that every countable open cover of $S$ has an open refinement which is locally finite.

This is precisely the definition of countably paracompact.