Complex Roots of Unity/Examples/Cube Roots
< Complex Roots of Unity/Examples(Redirected from Cube Roots of Unity)
Jump to navigation
Jump to search
Example of Complex Roots of Unity
The complex cube roots of unity are the elements of the set:
- $U_3 = \set {z \in \C: z^3 = 1}$
They are:
\(\ds \) | \(\) | \(\, \ds e^{0 i \pi / 3} \, \) | \(\, \ds = \, \) | \(\ds 1\) | ||||||||||
\(\ds \omega\) | \(=\) | \(\, \ds e^{2 i \pi / 3} \, \) | \(\, \ds = \, \) | \(\ds -\frac 1 2 + \frac {i \sqrt 3} 2\) | ||||||||||
\(\ds \omega^2\) | \(=\) | \(\, \ds e^{4 i \pi / 3} \, \) | \(\, \ds = \, \) | \(\ds -\frac 1 2 - \frac {i \sqrt 3} 2\) |
The notation $\omega$ for, specifically, the complex cube roots of unity is conventional.
Conjugate Form
The Cube Roots of Unity can be expressed in the form:
- $U_3 = \set {1, \omega, \overline \omega}$
where:
- $\omega = -\dfrac 1 2 + \dfrac {i \sqrt 3} 2$
- $\overline \omega$ denotes the complex conjugate of $\omega$.
Proof
\(\ds z^3 - 1\) | \(=\) | \(\ds \paren {z - 1} \paren {z^2 + z + 1}\) | Difference of Two Cubes/Corollary | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds 1\) | |||||||||||
\(\, \ds \text { or } \, \) | \(\ds z^2 + z + 1\) | \(=\) | \(\ds 0\) |
Then:
\(\ds z^2 + z + 1\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \dfrac {-1 \pm \sqrt {1^2 - 4 \times 1 \times 1} } {2 \times 1}\) | Quadratic Formula | ||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 2 \pm i \frac {\sqrt 3} 2\) | simplifying |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 3$. Roots of Unity
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Introduction
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): root of unity
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): cube root of unity
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): root of unity
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): cube root of unity