Cube as Difference between Two Squares
Jump to navigation
Jump to search
Theorem
A cube number can be expressed as the difference between two squares.
Proof
\(\ds n^3\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n k^3 - \sum_{k \mathop = 1}^{n - 1} k^3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {n^2 \paren {n + 1}^2} 4} - \paren {\frac {\paren {n - 1}^2 n^2} 4}\) | Sum of Sequence of Cubes | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^2 \paren {\paren {n + 1}^2 - \paren {n - 1}^2} } 4\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {n \paren {n + 1} } 2}^2 - \paren {\frac {n \paren {n - 1} } 2}^2\) |
$\blacksquare$
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $1$: Some Preliminary Considerations: $1.1$ Mathematical Induction: Problems $1.1$: $4$