Cyclotomic Polynomial has Integer Coefficients

From ProofWiki
Jump to: navigation, search


Let $n>0$ be a positive integer.

Then the $n$th cyclotomic polynomial $\Phi_n(x)$ has integer coefficients.


We proceed by induction on $n$.

For $n=1$, it follows from First Cyclotomic Polynomial that $\Phi_1(x)=x-1$.

Suppose it is true for all $m<n$. From Product of Cyclotomic Polynomials we have

$\displaystyle \prod_{d \mathop \backslash n} \Phi_d \left({x}\right) = x^n-1$

By the induction hypothesis,

$\displaystyle \prod_{\substack{d \mathop \backslash n\\ d\neq n}} \Phi_d \left({x}\right)$

is a monic polynomial with integer coefficients, and thus primitive.

From Content of Polynomials is Multiplicative it follows that $\Phi_n(x)$ has integer coefficients.