De Moivre's Formula

From ProofWiki
(Redirected from De Moivre's Theorem)
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number expressed in complex form:

$z = r \paren {\cos x + i \sin x}$

Then:

$\forall \omega \in \C: \paren {r \paren {\cos x + i \sin x} }^\omega = r^\omega \paren {\map \cos {\omega x} + i \, \map \sin {\omega x} }$


Exponential Form

De Moivre's Formula can also be expressed thus in exponential form:

$\forall \omega \in \C: \paren {r e^{i \theta} }^\omega = r^\omega e^{i \omega \theta}$


Integer Index

This result is often given for integer index only:


Let $z \in \C$ be a complex number expressed in complex form:

$z = r \paren {\cos x + i \sin x}$

Then:

\(\ds \forall n \in \Z: \, \) \(\ds \paren {r \paren {\cos x + i \sin x} }^n\) \(=\) \(\ds r^n \paren {\map \cos {n x} + i \map \sin {n x} }\)
\(\ds \) \(=\) \(\ds r^n \cos n x + i r^n \sin n x\)


Rational Index

Some sources give it for rational index:


Let $z \in \C$ be a complex number expressed in complex form:

$z = r \paren {\cos x + i \sin x}$

Then:

$\forall p \in \Q: \paren {r \paren {\cos x + i \sin x} }^p = r^p \paren {\map \cos {p x} + i \, \map \sin {p x} }$


Proof 1

\(\ds \paren {r \paren {\cos x + i \sin x} }^\omega\) \(=\) \(\ds \paren {r e^{i x} }^\omega\) Euler's Formula
\(\ds \) \(=\) \(\ds r^\omega e^{i \omega x}\) Power of Power
\(\ds \) \(=\) \(\ds r^\omega \paren {\map \cos {\omega x} + i \map \sin {\omega x} }\) Euler's Formula

$\blacksquare$


Also defined as

This result is also often presented in the simpler form:

$\forall \omega \in \C: \paren {\cos x + i \sin x}^\omega = \map \cos {\omega x} + i \, \map \sin {\omega x}$


Also known as

De Moivre's Theorem.


Source of Name

This entry was named for Abraham de Moivre.


Historical Note

De Moivre's Formula was discovered by Abraham de Moivre around $1707$.


Sources