De Morgan's Laws (Set Theory)/Proof by Induction/Difference with Union/Proof

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbb T = \set {T_i: i \mathop \in I}$, where each $T_i$ is a set and $I$ is some finite indexing set.


Then:

$\ds S \setminus \bigcup_{i \mathop \in I} T_i = \bigcap_{i \mathop \in I} \paren {S \setminus T_i}$


Proof

Let the cardinality $\size I$ of the indexing set $I$ be $n$.

Then by the definition of cardinality, it follows that $I \cong \N^*_n$ and we can express the proposition:

$\ds S \setminus \bigcup_{i \mathop \in I} T_i = \bigcap_{i \mathop \in I} \paren {S \setminus T_i}$

as:

$\ds S \setminus \bigcup_{i \mathop = 1}^n T_i = \bigcap_{i \mathop = 1}^n \paren {S \setminus T_i}$

The proof of this is more amenable to proof by Principle of Mathematical Induction.


For all $n \in \N_{>0}$, let $\map P n$ be the proposition:

$\ds S \setminus \bigcup_{i \mathop = 1}^n T_i = \bigcap_{i \mathop = 1}^n \paren {S \setminus T_i}$.


$\map P 1$ is true, as this just says $S \setminus T_1 = S \setminus T_1$.


Base Case

$\map P 2$ is the case:

$S \setminus \paren {T_1 \cup T_2} = \paren {S \setminus T_1} \cap \paren {S \setminus T_2}$

which has been proved.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\ds S \setminus \bigcup_{i \mathop = 1}^k T_i = \bigcap_{i \mathop = 1}^k \paren {S \setminus T_i}$


Induction Step

Now we need to show:

$\ds S \setminus \bigcup_{i \mathop = 1}^{k + 1} T_i = \bigcap_{i \mathop = 1}^{k + 1} \paren {S \setminus T_i}$


This is our induction step:

\(\ds S \setminus \bigcup_{i \mathop = 1}^{k + 1} T_i\) \(=\) \(\ds S \setminus \paren {\bigcup_{i \mathop = 1}^k T_i \cup T_{k + 1} }\) Union is Associative
\(\ds \) \(=\) \(\ds \paren {S \setminus \bigcup_{i \mathop = 1}^k T_i} \cap \paren {S \setminus T_{k + 1} }\) Base case
\(\ds \) \(=\) \(\ds \paren {\bigcap_{i \mathop = 1}^k \paren {S \setminus T_i} } \cap \paren {S \setminus T_{k + 1} }\) Induction hypothesis
\(\ds \) \(=\) \(\ds \bigcap_{i \mathop = 1}^{k + 1} \paren {S \setminus T_i}\) Intersection is Associative

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\ds S \setminus \bigcup_{i \mathop = 1}^n T_i = \bigcap_{i \mathop = 1}^n \paren {S \setminus T_i}$

that is:

$\ds S \setminus \bigcup_{i \mathop \in I} T_i = \bigcap_{i \mathop \in I} \paren {S \setminus T_i}$

$\blacksquare$


Source of Name

This entry was named for Augustus De Morgan.