# De Morgan's Laws (Set Theory)/Relative Complement/Family of Sets

Jump to navigation
Jump to search

## Contents

## Theorem

Let $S$ be a set.

Let $\left\langle{S_i}\right\rangle_{i \in I}$ be a family of subsets of $S$.

Then:

#### Complement of Intersection

- $\displaystyle \relcomp S {\bigcap_{i \mathop \in I} \mathbb S_i} = \bigcup_{i \mathop \in I} \relcomp S {S_i}$

#### Complement of Union

- $\displaystyle \relcomp S {\bigcup_{i \mathop \in I} \mathbb S_i} = \bigcap_{i \mathop \in I} \relcomp S {S_i}$

## Source of Name

This entry was named for Augustus De Morgan.

## Sources

- 1953: Walter Rudin:
*Principles of Mathematical Analysis*... (next): $2.22$