De Morgan's Laws (Set Theory)/Relative Complement/General Case/Complement of Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $T$ be a subset of $S$.

Let $\powerset T$ be the power set of $T$.

Let $\mathbb T \subseteq \powerset T$.


Then:

$\ds \relcomp S {\bigcup \mathbb T} = \bigcap_{H \mathop \in \mathbb T} \relcomp S H$


Proof

\(\ds \relcomp S {\bigcup \mathbb T}\) \(=\) \(\ds S \setminus \paren {\bigcup \mathbb T}\) Definition of Relative Complement
\(\ds \) \(=\) \(\ds \bigcap_{H \mathop \in \mathbb T} \paren {S \setminus H}\) De Morgan's Laws: Difference with Union
\(\ds \) \(=\) \(\ds \bigcap_{H \mathop \in \mathbb T} \relcomp S H\) Definition of Relative Complement

$\blacksquare$


Source of Name

This entry was named for Augustus De Morgan.


Sources