De Morgan's Laws (Set Theory)/Set Difference
Jump to navigation
Jump to search
Theorem
Let $S, T_1, T_2$ be sets.
Let:
- $T_1 \cap T_2$ denote set intersection
- $T_1 \cup T_2$ denote set union.
Then:
Difference with Intersection
- $S \setminus \paren {T_1 \cap T_2} = \paren {S \setminus T_1} \cup \paren {S \setminus T_2}$
Difference with Union
- $S \setminus \paren {T_1 \cup T_2} = \paren {S \setminus T_1} \cap \paren {S \setminus T_2}$
General Case
Let $S$ and $T$ be sets.
Let $\powerset T$ be the power set of $T$.
Let $\mathbb T \subseteq \powerset T$.
Then:
Difference with Intersection
- $\ds S \setminus \bigcap \mathbb T = \bigcup_{T' \mathop \in \mathbb T} \paren {S \setminus T'}$
where:
- $\ds \bigcap \mathbb T := \set {x: \forall T' \in \mathbb T: x \in T'}$
that is, the intersection of $\mathbb T$
Difference with Union
- $\ds S \setminus \bigcup \mathbb T = \bigcap_{T' \mathop \in \mathbb T} \paren {S \setminus T'}$
where:
- $\ds \bigcup \mathbb T := \set {x: \exists T' \in \mathbb T: x \in T'}$
that is, the union of $\mathbb T$.
Family of Sets
Let $S$ and $T$ be sets.
Let $\family {T_i}_{i \mathop \in I}$ be a family of subsets of $T$.
Then:
Difference with Intersection
- $\ds S \setminus \bigcap_{i \mathop \in I} T_i = \bigcup_{i \mathop \in I} \paren {S \setminus T_i}$
where:
- $\ds \bigcup_{i \mathop \in I} T_i := \set {x: \exists i \in I: x \in T_i}$
that is, the union of $\family {T_i}_{i \mathop \in I}$.
Difference with Union
- $\ds S \setminus \bigcup_{i \mathop \in I} T_i = \bigcap_{i \mathop \in I} \paren {S \setminus T_i}$
where:
- $\ds \bigcap_{i \mathop \in I} T_i := \set {x: \forall i \in I: x \in T_i}$
that is, the intersection of $\family {T_i}_{i \mathop \in I}$.
Source of Name
This entry was named for Augustus De Morgan.