Definite Integral from 0 to 1 of Logarithm of One plus x over x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^1 \frac {\map \ln {1 + x} } x \rd x = \frac {\pi^2} {12}$


Proof

\(\ds \int_0^1 \frac {\map \ln {1 + x} } x \rd x\) \(=\) \(\ds \int_0^1 \frac 1 x \paren {\sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {x^n} n} \rd x\) Power Series Expansion for $\map \ln {1 + x}$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \paren {\frac {\paren {-1}^{n - 1} } n \int_0^1 x^{n - 1} \rd x}\) Power Series is Termwise Integrable within Radius of Convergence
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } {n^2}\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {\pi^2} {12}\) Sum of Reciprocals of Squares Alternating in Sign

$\blacksquare$


Sources