Definite Integral from 0 to Half Pi of Odd Power of Sine x
Jump to navigation
Jump to search
Theorem
\(\ds \int_0^{\frac \pi 2} \sin^{2 n + 1} x \rd x\) | \(=\) | \(\ds \dfrac {\paren {2^n n!}^2} {\paren {2 n + 1}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {2 \cdot 4 \cdot 6 \cdots 2 n} {3 \cdot 5 \cdot 7 \cdots \paren {2 n + 1} }\) |
for $n \in \Z_{>0}$.
Proof 1
![]() | Although this article appears correct, it's inelegant. There has to be a better way of doing it. In particular: This would be more rigorous if implemented as a formal induction proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Improve}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Let $I_n = \ds \int_0^{\frac \pi 2} \sin^n x \rd x$.
Then:
\(\ds I_{2 n + 1}\) | \(=\) | \(\ds \frac {2 n} {2 n + 1} I_{2 n - 1}\) | Reduction Formula for Definite Integral of Power of Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 n \paren {2 n - 2} } {\paren {2 n + 1} \paren {2 n - 1} } I_{2 n - 3}\) | Reduction Formula for Definite Integral of Power of Sine again | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} I_1\) | Reduction Formula for Definite Integral of Power of Sine until the end | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} \int_0^{\pi / 2} \sin x \rd x\) | Definition of $I_n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} \bigintlimits {-\cos x} 0 {\pi / 2}\) | Primitive of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} \paren {0 - \paren {-1} }\) | Cosine of Right Angle and Cosine of Zero is One | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {2 n}^2 \paren {2 n - 2}^2 \dotsm 2^2} {\paren {2 n + 1} \paren {2 n} \paren {2 n - 1} \paren {2 n - 2} \paren {2 n - 3} \dotsm 3 \cdot 2}\) | multiplying top and bottom by top | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {2 n}^2 n^2 \paren {n - 1}^2 \dotsm 1^2} {\paren {2 n + 1} \paren {2 n} \paren {2 n - 1} \paren {2 n - 2} \paren {2 n - 3} \dotsm 3 \cdot 2}\) | extracting factor of $\paren {2^n}^2$ from the top | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {2^n n!}^2} {\paren {2 n + 1}!}\) | Definition of Factorial |
$\blacksquare$
Proof 2
\(\ds \int_0^{\pi/2} \sin^{2 n + 1} x \rd x\) | \(=\) | \(\ds \int_0^{\pi/2} \paren {\sin x}^{2 \paren {n + 1} - 1} \paren {\cos x}^{2 \paren {\frac 1 2} - 1} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \map \Beta {n + 1, \frac 1 2}\) | Definition 2 of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \Gamma {n + 1} \map \Gamma {\frac 1 2} } {2 \map \Gamma {n + \frac 3 2} }\) | Definition 3 of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n! \sqrt \pi} {2 \paren {n + \frac 1 2} \map \Gamma {n + \frac 1 2} }\) | Gamma Function Extends Factorial, Gamma Function of One Half, Gamma Difference Equation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n! \sqrt \pi} {2 n + 1} \times \frac {2^{2 n} n!} {\paren {2 n!} \sqrt \pi}\) | Gamma Function of Positive Half-Integer | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {2^n n!}^2 } {\paren {2 n + 1}!}\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Trigonometric Functions: $15.31$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous): Back endpapers: A Brief Table of Integrals: $141$.
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 17.4 \ (2)$