Definite Integral from 0 to Quarter Pi of Logarithm of One plus Tan x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^{\pi/4} \map \ln {1 + \tan x} \rd x = \frac \pi 8 \ln 2$


Proof

\(\ds \int_0^{\pi/4} \map \ln {1 + \tan x} \rd x\) \(=\) \(\ds \int_0^{\pi/4} \map \ln {1 + \map \tan {\frac \pi 4 - x} } \rd x\) Integral between Limits is Independent of Direction
\(\ds \) \(=\) \(\ds \int_0^{\pi/4} \map \ln {1 + \frac {\tan \frac \pi 4 - \tan x} {1 + \tan \frac \pi 4 \tan x} } \rd x\) Tangent of Difference
\(\ds \) \(=\) \(\ds \int_0^{\pi/4} \map \ln {1 + \frac {1 - \tan x} {1 + \tan x} } \rd x\) Tangent of $45 \degrees$
\(\ds \) \(=\) \(\ds \int_0^{\pi/4} \map \ln {\frac 2 {1 + \tan x} } \rd x\)
\(\ds \) \(=\) \(\ds \int_0^{\pi/4} \ln 2 \rd x - \int_0^{\pi/4} \map \ln {1 + \tan x} \rd x\) Difference of Logarithms
\(\ds \) \(=\) \(\ds \frac \pi 4 \ln 2 - \int_0^{\pi/4} \map \ln {1 + \tan x} \rd x\) Primitive of Constant

Therefore:

$\ds 2 \int_0^{\pi/4} \map \ln {1 + \tan x} \rd x = \frac \pi 4 \ln 2$

giving:

$\ds \int_0^{\pi/4} \map \ln {1 + \tan x} \rd x = \frac \pi 8 \ln 2$

$\blacksquare$


Sources