Definite Integral from 0 to a of Reciprocal of Root of a Squared minus x Squared
Jump to navigation
Jump to search
Theorem
- $\ds \int_0^a \dfrac {\d x} {\sqrt {a^2 - x^2} } = \frac \pi 2$
for $a > 0$.
Proof 1
\(\ds \int_0^a \dfrac {\d x} {\sqrt {a^2 - x^2} }\) | \(=\) | \(\ds \int_0^{\mathop \to a} \dfrac {\d x} {\sqrt {a^2 - x^2} }\) | as $\dfrac 1 {\sqrt {a^2 - x^2} }$ does not exist for $x = a$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\gamma \mathop \to a} \int_0^\gamma \dfrac {\d x} {\sqrt {a^2 - x^2} }\) | Definition of Improper Integral on Open Above Interval | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\gamma \mathop \to a} \intlimits {\arcsin \frac x a} 0 \gamma\) | Primitive of $\dfrac 1 {\sqrt {a^2 - x^2} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\gamma \mathop \to a} \paren {\arcsin \frac \gamma a - \arcsin 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\gamma \mathop \to a} \arcsin \frac \gamma a\) | Arcsine of Zero is Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \arcsin \frac a a\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \arcsin 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2\) | Arcsine of One is Half Pi |
$\blacksquare$
Proof 2
\(\ds \int_0^a \frac {\d x} {\sqrt {a^2 - x^2} }\) | \(=\) | \(\ds \frac {a^{1 - \frac 2 2} \map \Gamma {\frac 1 2} \map \Gamma {-\frac 1 2 + 1} } {2 \map \Gamma {\frac 1 2 - \frac 1 2 + 1} }\) | Definite Integral from 0 to a of $x^m \paren {a^n - x^n}^p$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \times 0!} \paren {\map \Gamma {\frac 1 2} }^2\) | Gamma Function Extends Factorial | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {\sqrt \pi}^2\) | Gamma Function of One Half | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi 2\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Rational or Irrational expressions: $15.22$