Definite Integral from 0 to a of Reciprocal of Root of a Squared minus x Squared/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^a \dfrac {\d x} {\sqrt {a^2 - x^2} } = \frac \pi 2$

for $a > 0$.


Proof

\(\ds \int_0^a \dfrac {\d x} {\sqrt {a^2 - x^2} }\) \(=\) \(\ds \int_0^{\mathop \to a} \dfrac {\d x} {\sqrt {a^2 - x^2} }\) as $\dfrac 1 {\sqrt {a^2 - x^2} }$ does not exist for $x = a$
\(\ds \) \(=\) \(\ds \lim_{\gamma \mathop \to a} \int_0^\gamma \dfrac {\d x} {\sqrt {a^2 - x^2} }\) Definition of Improper Integral on Open Above Interval
\(\ds \) \(=\) \(\ds \lim_{\gamma \mathop \to a} \intlimits {\arcsin \frac x a} 0 \gamma\) Primitive of $\dfrac 1 {\sqrt {a^2 - x^2} }$
\(\ds \) \(=\) \(\ds \lim_{\gamma \mathop \to a} \paren {\arcsin \frac \gamma a - \arcsin 0}\)
\(\ds \) \(=\) \(\ds \lim_{\gamma \mathop \to a} \arcsin \frac \gamma a\) Arcsine of Zero is Zero
\(\ds \) \(=\) \(\ds \arcsin \frac a a\)
\(\ds \) \(=\) \(\ds \arcsin 1\)
\(\ds \) \(=\) \(\ds \frac \pi 2\) Arcsine of One is Half Pi

$\blacksquare$