Definite Integral to Infinity of Exponential of -a x by One minus Cosine x over x Squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \frac {e^{-a x} \paren {1 - \cos x} } {x^2} \rd x = \arccot a - \frac a 2 \map \ln {a^2 + 1} + a \ln a$

where $a$ is a positive real number.


Proof

Set:

$\ds \map I a = \int_0^\infty \frac {e^{-a x} \paren {1 - \cos x} } {x^2} \rd x$

for $a > 0$.

We have:

\(\ds \map {I} a\) \(=\) \(\ds \frac {\d^2} {\d a^2} \int_0^\infty \frac {e^{-a x} \paren {1 - \cos x} } {x^2} \rd x\)
\(\ds \) \(=\) \(\ds \frac \d {\d a} \int_0^\infty \frac \partial {\partial a} \paren {\frac {e^{-a x} \paren {1 - \cos x} } {x^2} } \rd x\) Definite Integral of Partial Derivative
\(\ds \) \(=\) \(\ds -\frac \d {\d a} \int_0^\infty \frac {e^{-a x} \paren {1 - \cos x} } x \rd x\) Derivative of $e^{a x}$
\(\ds \) \(=\) \(\ds -\int_0^\infty \frac \partial {\partial a} \paren {\frac {e^{-a x} \paren {1 - \cos x} } x} \rd x\) Definite Integral of Partial Derivative
\(\ds \) \(=\) \(\ds \int_0^\infty e^{-a x} \paren {1 - \cos x} \rd x\) Derivative of $e^{a x}$
\(\ds \) \(=\) \(\ds \int_0^\infty e^{-a x} \rd x - \int_0^\infty e^{-a x} \cos x \rd x\)
\(\ds \) \(=\) \(\ds \intlimits {-\frac {e^{-a x} } a} 0 \infty - \frac a {a^2 + 1}\) Primitive of $e^{a x}$, Definite Integral to Infinity of $e^{-a x} \cos b x$
\(\ds \) \(=\) \(\ds \frac 1 a - \frac a {a^2 + 1}\) Exponential of Zero, Exponential Tends to Zero and Infinity


We then have, from Primitive of $\dfrac 1 x$ and Primitive of $\dfrac x {x^2 + a^2}$:

$\ds \map {I'} a = \ln a - \frac 1 2 \map \ln {a^2 + 1} + C$

for some constant $C \in \R$.


Note that:

\(\ds \lim_{a \mathop \to \infty} \map {I'} a\) \(=\) \(\ds \lim_{a \mathop \to \infty} \int_0^\infty \frac {e^{-a x} \cos x} x \rd x\)
\(\ds \) \(=\) \(\ds \int_0^\infty \frac 0 x \rd x\)
\(\ds \) \(=\) \(\ds 0\)


On the other hand:

\(\ds \lim_{a \mathop \to \infty} \map {I'} a\) \(=\) \(\ds \lim_{a \mathop \to \infty} \paren {\ln a - \frac 1 2 \map \ln {a^2 + 1} + C}\)
\(\ds \) \(=\) \(\ds C + \lim_{a \mathop \to \infty} \paren {\map \ln {\frac a {\sqrt {a^2 + 1} } } }\) Logarithm of Power, Difference of Logarithms
\(\ds \) \(=\) \(\ds C + \lim_{a \mathop \to \infty} \paren {\map \ln {\frac 1 {\sqrt {1 + \frac 1 {a^2} } } } }\)
\(\ds \) \(=\) \(\ds C + \ln 1\)
\(\ds \) \(=\) \(\ds C\) Logarithm of 1 is 0

so:

$\ds \map {I'} a = \ln a - \frac 1 2 \map \ln {a^2 + 1}$


We have:

\(\ds \map I a\) \(=\) \(\ds \int \map {I'} a \rd a\)
\(\ds \) \(=\) \(\ds \int \ln a \rd a - \frac 1 2 \int \map \ln {a^2 + 1} \rd a\)
\(\ds \) \(=\) \(\ds a \ln a - a - \frac 1 2 \paren {a \map \ln {a^ 2 + 1} - 2 a + 2 \arctan a} + C_2\) Primitive of $\ln x$, Primitive of $\map \ln {x^2 + a^2}$
\(\ds \) \(=\) \(\ds a \ln a - a - \frac 1 2 a \map \ln {a^2 + 1} + a - \arctan a + C_2\)
\(\ds \) \(=\) \(\ds a \ln a - \frac 1 2 a \map \ln {a^2 + 1} - \arctan a + C_2\)

for some constant $C_2 \in \R$.


Similarly we have:

\(\ds \lim_{a \mathop \to \infty} \int_0^\infty \frac {e^{-a x} \paren {1 - \cos x} } {x^2} \rd x\) \(=\) \(\ds \int_0^\infty \frac 0 {x^2} \rd x\)
\(\ds \) \(=\) \(\ds 0\)


On the other hand:

\(\ds \lim_{a \mathop \to \infty} \map I a\) \(=\) \(\ds \lim_{a \mathop \to \infty} \map \ln {\frac {a^a} {\paren {\sqrt {a^2 + 1} }^a} } - \lim_{a \mathop \to \infty} \paren {\arctan a} + C_2\)
\(\ds \) \(=\) \(\ds \lim_{a \mathop \to \infty} \map \ln {\frac 1 {\paren {\sqrt {1 + \frac 1 {a^2} } }^a} } - \frac \pi 2 + C_2\) Limit of Arctangent Function
\(\ds \) \(=\) \(\ds C_2 - \frac \pi 2\)


We hence have:

\(\ds \map I a\) \(=\) \(\ds a \ln a - \frac 1 2 a \map \ln {a^2 + 1} + \paren {\frac \pi 2 - \arctan a}\)
\(\ds \) \(=\) \(\ds a \ln a - \frac 1 2 a \map \ln {a^2 + 1} + \arccot a\) Arccotangent Function in terms of Arctangent

$\blacksquare$


Sources