Definite Integral to Infinity of Power of x by Logarithm of x over One plus x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \frac {x^{p - 1} \ln x} {1 + x} \rd x = -\pi^2 \csc p \pi \cot p \pi$

where:

$p$ is a real number with $0 < p < 1$
$\csc$ denotes the cosecant function
$\cot$ denotes the cotangent function.


Proof

\(\ds \int_0^\infty \frac {x^{p - 1} \ln x} {1 + x} \rd x\) \(=\) \(\ds \int_0^\infty \frac 1 {1 + x} \map {\frac \partial {\partial p} } {x^{p - 1} } \rd x\) Derivative of Power of Constant
\(\ds \) \(=\) \(\ds \frac \d {\d p} \int_0^\infty \frac {x^{p - 1} } {1 + x} \rd x\) Definite Integral of Partial Derivative
\(\ds \) \(=\) \(\ds \map {\frac \d {\d p} } {\pi \csc p \pi}\) Definite Integral to Infinity of $\dfrac {x^{p - 1} } {1 + x}$
\(\ds \) \(=\) \(\ds -\pi^2 \csc p \pi \cot p \pi\) Chain Rule for Derivatives, Derivative of Cosecant Function

$\blacksquare$


Sources