Definite Integral to Infinity of Reciprocal of 1 plus Power of x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \frac 1 {1 + x^n} \rd x = \frac \pi n \map \csc {\frac \pi n}$


Proof

From Euler's Reflection Formula:

$\map \Gamma {\dfrac 1 n} \map \Gamma {1 - \dfrac 1 n} = \pi \map \csc {\dfrac \pi n}$

Then:

\(\ds \map \Gamma {\frac 1 n} \map \Gamma {1 - \frac 1 n}\) \(=\) \(\ds \frac {\map \Gamma {\frac 1 n} \map \Gamma {1 - \frac 1 n} } {\map \Gamma {1 - \frac 1 n + \frac 1 n} }\) $\map \Gamma 1 = 1$
\(\ds \) \(=\) \(\ds \map \Beta {\frac 1 n, 1 - \frac 1 n}\) Definition 3 of Beta Function
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi / 2} \paren {\sin \theta}^{\frac 2 n - 1} \paren {\cos \theta}^{1 - \frac 2 n} \rd \theta\) Definition 2 of Beta Function
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi / 2} \paren {\frac {\sin \theta} {\cos \theta} }^{\frac 2 n - 1} \rd \theta\)
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi / 2} \paren {\tan \theta}^{\frac 2 n - 1} \rd \theta\) Definition of Tangent Function

Note we have:

\(\ds \frac {\map \d {\paren {\tan \theta}^{\frac 2 n} } } {\d \theta}\) \(=\) \(\ds \frac {\map \d {\tan \theta} } {\d \theta} \cdot \frac {\map \d {\paren {\tan \theta}^{\frac 2 n} } } {\map \d {\tan \theta} }\) Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \sec^2 \theta \cdot \frac 2 n \paren {\tan \theta}^{\frac 2 n - 1}\) Derivative of Tangent Function, Derivative of Power
\(\ds \) \(=\) \(\ds \frac 2 n \paren {1 + \tan^2 \theta} \paren {\tan \theta}^{\frac 2 n - 1}\) Difference of Squares of Secant and Tangent
\(\ds \) \(=\) \(\ds \frac 2 n \paren {1 + \paren {\tan^{\frac 2 n} \theta}^n} \cdot \paren {\tan \theta}^{\frac 2 n - 1}\)

As $\theta \nearrow \dfrac \pi 2$, $\tan \theta \to \infty$ and $\tan 0 = 0$, so making a substitution of $x = \paren {\tan \theta}^{\frac 2 n}$ to our original integral:



\(\ds 2 \int_0^{\pi / 2} \paren {\tan \theta}^{\frac 2 n - 1} \rd \theta\) \(=\) \(\ds 2 \int_0^\infty \paren {\tan \theta}^{\frac 2 n - 1} \frac {\rd x} {\frac 2 n \paren {1 + \paren {\tan^{\frac 2 n} \theta}^n} \cdot \paren {\tan \theta}^{\frac 2 n - 1} }\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac {2 n} 2 \int_0^\infty \frac {\paren {\tan\theta}^{\frac 2 n - 1} } {\paren {\tan \theta}^{\frac 2 n - 1} } \frac {\rd x} {1 + x^n}\)
\(\ds \) \(=\) \(\ds n \int_0^\infty \frac 1 {1 + x^n} \rd x\)

So we have:

$\ds \pi \map \csc {\frac \pi n} = n \int_0^\infty \frac 1 {1 + x^n} \rd x$

Hence:

$\ds \int_0^\infty \frac 1 {1 + x^n} \rd x = \frac \pi n \map \csc {\frac \pi n}$

$\blacksquare$