Definite Integral to Infinity of Reciprocal of x Squared plus a Squared/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \dfrac {\d x} {x^2 + a^2} = \frac \pi {2 a}$

for $a \ne 0$.


Proof

\(\ds \int_0^\infty \dfrac {\d x} {x^2 + a^2}\) \(=\) \(\ds \int_0^{\mathop \to +\infty} \dfrac {\d x} {x^2 + a^2}\)
\(\ds \) \(=\) \(\ds \lim_{\gamma \mathop \to +\infty} \int_0^\gamma \dfrac {\d x} {x^2 + a^2}\) Definition of Improper Integral on Closed Interval Unbounded Above
\(\ds \) \(=\) \(\ds \lim_{\gamma \mathop \to +\infty} \intlimits {\frac 1 a \arctan \frac x a} 0 \gamma\) Primitive of $\dfrac 1 {x^2 + a^2}$
\(\ds \) \(=\) \(\ds \frac 1 a \lim_{\gamma \mathop \to +\infty} \paren {\arctan \frac \gamma a - \arctan 0}\)
\(\ds \) \(=\) \(\ds \frac 1 a \lim_{\gamma \mathop \to +\infty} \arctan \frac \gamma a\) Arctangent of Zero is Zero
\(\ds \) \(=\) \(\ds \frac 1 a \frac \pi 2\) Arctangent Tends to Half Pi as Argument Tends to Infinity

Hence the result.

$\blacksquare$