Definition:B-Algebra
Jump to navigation
Jump to search
Definition
Let $\struct {X, \circ}$ be an algebraic structure.
$\struct {X, \circ}$ is a $B$-algebra if and only if $\struct {X, \circ}$ satisfies the $B$-algebra axioms:
\((\text {AC})\) | $:$ | \(\ds \forall x, y \in X:\) | \(\ds x \circ y \in X \) | ||||||
\((\text A 0)\) | $:$ | \(\ds \exists 0 \in X \) | |||||||
\((\text A 1)\) | $:$ | \(\ds \forall x \in X:\) | \(\ds x \circ x = 0 \) | ||||||
\((\text A 2)\) | $:$ | \(\ds \forall x \in X:\) | \(\ds x \circ 0 = x \) | ||||||
\((\text A 3)\) | $:$ | \(\ds \forall x, y, z \in X:\) | \(\ds \paren {x \circ y} \circ z = x \circ \paren {z \circ \paren {0 \circ y} } \) |
Examples
$B$-Algebra Induced by $S_3$
This is a $B$-algebra for the finite set $\set {0, 1, 2, 3, 4, 5}$:
- $\begin{array}{c|cccccc} & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 0 & 2 & 1 & 3 & 4 & 5 \\ 1 & 1 & 0 & 2 & 4 & 5 & 3 \\ 2 & 2 & 1 & 0 & 5 & 3 & 4 \\ 3 & 3 & 4 & 5 & 0 & 2 & 1 \\ 4 & 4 & 5 & 3 & 1 & 0 & 2 \\ 5 & 5 & 3 & 4 & 2 & 1 & 0 \\ \end{array}$
Also see
- Results about $B$-algebras can be found here.
Linguistic Note
A literature search has failed to reveal the origin or derivation of the term $B$-algebra.
Hence the reason for why it is called that is still under investigation.
Sources
- 2002: J. Neggers and Hee Sik Kim: On B-Algebras (Matematički Vesnik Vol. 54: pp. 21 – 29)