Definition:Best-Response Function
Jump to navigation
Jump to search
Definition
Let a strategic game $G$ be modelled by:
- $G = \stratgame N {A_i} {\succsim_i}$
Let $a^*$ be a Nash equilibrium of $G$:
- $\forall i \in N: \forall a_i \in A_i: \tuple {a^*_{-i}, a^*_i} \succsim_i \tuple {a^*_{-i}, a_i}$
For any $a_{-1} \in A_{-i}$, let $\map {B_i} {a_{-i} }$ be the set of player $i$'s best moves, defined as:
- $\map {B_i} {a_{-i} } = \set {a_i \in A_i: \forall a'_i \in A_i: \tuple {a_{-i}, a_i} \precsim_i \tuple {a_{-i}, a'_i} }$
Then $B_{-i}$ is known as the best-response function of player $i$.
Sources
- 1994: Martin J. Osborne and Ariel Rubinstein: A Course in Game Theory ... (previous) ... (next): $\text I$ Strategic Games: Chapter $2$ Nash Equilibrium: $2.2$: Nash Equilibrium: $(15.2)$